## Mean Value Theorem

-If $y=f(x)$ is continuous at every point of the closed interval $[a, b]$ and differentiable at every point of its interior $(a, b)$, then there is at least one point $c$ in $(a, b)$ at which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$


-Somewhere between points $a$ and $b$ on the differentiable curve, there is $a t$ least one tangent line parallel to the chord $a b$.

## Example

-Show that $f(x)=x^{2}$ satisfies the hypothesis of the MVT on $[0,2]$. Then find a c for:

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

$-f(x)=x^{2}$ is continuous on $[0,2]$ and differentiable on $(0,2)$

So,

$$
\begin{aligned}
& 2 c=\frac{f(2)-f(0)}{2-0}=2 \\
& c=1
\end{aligned}
$$

-Tangent line to $f(x)=x^{2}$ at $x=0$ has slope 2 and is parallel to the chord connecting $(0,0)$ and $(2,4)$.

## Rolle's Theorem

Let $f$ be continuous on the closed interval $[a, b]$ and differentiable on the open interval $(a, b)$. If

$$
f(a)=f(b)
$$

then there is at least one number $c$ in $(a, b)$ such that $f^{\prime}(c)=0$.

## Example

Find the two intercepts of $f(x)=x^{2}-3 x+2$ and show that $f^{\prime}(x)=0$ at some point between the $x$-intercepts.

$$
x^{2}-3 x+2=0
$$

$$
(x-2)(x-1)=0
$$

So, $f(1)=f(2)=0$ and we know by Rolle's Theorem there exist at least one $c$ on $(1,2)$ such that $f^{\prime}(c)=0$.

$$
\begin{aligned}
& f^{\prime}(x)=2 x-3=0 \\
& f^{\prime}(x)=0 \text { when } x=\frac{3}{2}
\end{aligned}
$$

-Note that this value does fall within the interval $(1,2)$.

## Example

Let $f(x)=x^{4}-2 x^{2}$. Find all values of $c$ in the interval $(-2,2)$ such that $f^{\prime}(c)=0$.

$$
\begin{aligned}
& \text {-Continuous on }[-2,2] \text { ? YES! } \\
& \text {-Differentiable on }(-2,2) \text { ? YES! }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
f(a)=f(b) ? \\
\quad x^{4}-2 x^{2}=0 \\
\\
x^{2}\left(x^{2}-2\right)=0 \\
x=0, \pm \sqrt{2} \\
f^{\prime}(x)=4 x^{3}-4 x=0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 4 x(x-1)(x+1)=0 \\
& x=0,-1,1
\end{aligned}
$$

## Example

Let $f(x)=\sqrt{1-x^{2}}, A(-1, f(-1))$ and $B(1, f(1))$. Find a tangent to $f$ in the interval $(-1,1)$ that is parallel to the secant $A B$.
$-f$ is continuous on $[-1,1]$

$$
f^{\prime}(x)=\frac{-x}{\sqrt{1-x^{2}}}
$$

is defined on $(-1,1)$
-Since $f(-1)=f(1)=0$ and the tangent we are looking for is horizontal.
-We find $f^{\prime}=0$ at $x=0$ where the graph has a horizontal tangent at $y=1$.

## Increasing and Decreasing Functions

-Let $f$ be a function defined on an interval $I$ and let $x_{1}$ and $x_{2}$ be any two points on I

$$
\begin{aligned}
& f \text { increases on I iff } x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right) \\
& f \text { decreases on I iff } x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)
\end{aligned}
$$

## Corollary-Increasing and Decreasing Functions

-Let $f$ be continuous on $[a, b]$ and differentiable on $(a, b)$

$$
\begin{aligned}
& \text { If } f^{\prime}>0 \text { at each point of }(a, b) \text { then } f \text { increases on }[a, b] \\
& \text { If } f^{\prime}<0 \text { at each point of }(a, b) \text { then } f \text { decreases on }[a, b]
\end{aligned}
$$

## Example

Find where $y=x^{2}$ is increasing or decreasing.

$$
\begin{aligned}
& \text {-decreasing on }(-\infty, 0] \text { b/c } y^{\prime}=2 x<0 \text { on }(-\infty, 0) \\
& \text {-increasing on }[0, \infty) \text { b/c } y^{\prime}=2 x>0 \text { on }(0, \infty)
\end{aligned}
$$

## Example

Find where the function $f(x)=x^{3}-4 x$ is increasing or decreasing.
-Find the derivative

$$
f^{\prime}(x)=3 x^{2}-4
$$

-The function is increasing where $f^{\prime}(x)>0$

$$
\begin{aligned}
& 3 x^{2}-4>0 \\
& x^{2}>\frac{4}{3}
\end{aligned}
$$

$$
x<-\sqrt{\frac{4}{3}} \text { or } x>\sqrt{\frac{4}{3}}
$$

-The function is decreasing where $f^{\prime}(x)<0$

$$
\begin{aligned}
& 3 x^{2}-4<0 \\
& x^{2}<\frac{4}{3} \\
& -\sqrt{\frac{4}{3}}<x<\sqrt{\frac{4}{3}}
\end{aligned}
$$

-The function increases on $(-\infty,-1.15]$ and $[1.15, \infty)$
-Decreases on $[-1.15,1.15]$

